使用 LangChain
如果您在 LangGraph 中使用 LangChain 模块,您只需设置几个环境变量即可启用跟踪。 本指南将介绍一个基本示例。有关配置的更多详细信息,请参阅使用 LangChain 跟踪指南。1. 安装
为 Python 和 JS 安装 LangGraph 库和 OpenAI 集成(我们在下面的代码片段中使用 OpenAI 集成)。 有关可用包的完整列表,请参阅 LangChain Python 文档和 LangChain JS 文档。2. 配置您的环境
如果您在非无服务器环境中使用 LangChain.js 和 LangSmith,我们还建议显式设置以下内容以减少延迟:
export LANGCHAIN_CALLBACKS_BACKGROUND=true如果您在无服务器环境中,我们建议设置相反的设置以允许跟踪在函数结束之前完成:export LANGCHAIN_CALLBACKS_BACKGROUND=false有关更多信息,请参阅此 LangChain.js 指南。3. 记录跟踪
一旦您设置了环境,您就可以像往常一样调用 LangChain 可运行项。LangSmith 将推断正确的跟踪配置:
Without LangChain
If you are using other SDKs or custom functions within LangGraph, you will need to wrap or decorate them appropriately (with the@traceable decorator in Python or the traceable function in JS, or something like e.g. wrap_openai for SDKs). If you do so, LangSmith will automatically nest traces from those wrapped methods.
Here’s an example. You can also see this page for more information.
1. Installation
Install the LangGraph library and the OpenAI SDK for Python and JS (we use the OpenAI integration for the code snippets below).2. Configure your environment
If you are using LangChain.js with LangSmith and are not in a serverless environment, we also recommend setting the following explicitly to reduce latency:
export LANGCHAIN_CALLBACKS_BACKGROUND=trueIf you are in a serverless environment, we recommend setting the reverse to allow tracing to finish before your function ends:export LANGCHAIN_CALLBACKS_BACKGROUND=falseSee this LangChain.js guide for more information.3. Log a trace
Once you’ve set up your environment, wrap or decorate the custom functions/SDKs you want to trace. LangSmith will then infer the proper tracing config: