有时,您需要跨多个服务跟踪请求。 LangSmith 开箱即用地支持分布式跟踪,使用上下文传播标头(langsmith-trace 和用于元数据/标签的可选 baggage)跨服务链接跟踪中的运行。 客户端-服务器设置示例:
  • 跟踪从客户端开始
  • 在服务器上继续

Python 中的分布式跟踪

# client.py
from langsmith.run_helpers import get_current_run_tree, traceable
import httpx

@traceable
async def my_client_function():
    headers = {}
    async with httpx.AsyncClient(base_url="...") as client:
        if run_tree := get_current_run_tree():
            # add langsmith-id to headers
            headers.update(run_tree.to_headers())
        return await client.post("/my-route", headers=headers)
然后服务器(或其他服务)可以通过适当处理标头来继续跟踪。如果你使用 asgi 应用 Starlette 或 FastAPI,可以使用 LangSmith 的 TracingMiddleware 连接分布式跟踪。
TracingMiddleware 类在 langsmith==0.1.133 中添加。
使用 FastAPI 的示例:
from langsmith import traceable
from langsmith.middleware import TracingMiddleware
from fastapi import FastAPI, Request

app = FastAPI()  # Or Flask, Django, or any other framework
app.add_middleware(TracingMiddleware)

@traceable
async def some_function():
    ...

@app.post("/my-route")
async def fake_route(request: Request):
    return await some_function()
或在 Starlette 中:
from starlette.applications import Starlette
from starlette.middleware import Middleware
from langsmith.middleware import TracingMiddleware

routes = ...
middleware = [
    Middleware(TracingMiddleware),
]
app = Starlette(..., middleware=middleware)
如果你使用其他服务器框架,始终可以通过在 langsmith_extra 中传递标头来”接收”分布式跟踪:
# server.py
import langsmith as ls
from fastapi import FastAPI, Request

@ls.traceable
async def my_application():
    ...

app = FastAPI()  # Or Flask, Django, or any other framework

@app.post("/my-route")
async def fake_route(request: Request):
    # request.headers:  {"langsmith-trace": "..."}
    # as well as optional metadata/tags in `baggage`
    with ls.tracing_context(parent=request.headers):
        return await my_application()
上面的示例使用 tracing_context 上下文管理器。你也可以在用 @traceable 包装的方法的 langsmith_extra 参数中直接指定父运行上下文。
# ... same as above

@app.post("/my-route")
async def fake_route(request: Request):
    # request.headers:  {"langsmith-trace": "..."}
    my_application(langsmith_extra={"parent": request.headers})

TypeScript 中的分布式跟踪

TypeScript 中的分布式跟踪需要 langsmith 版本 >=0.1.31
首先,我们从客户端获取当前运行树并将其转换为 langsmith-tracebaggage 标头值,我们可以将其传递给服务器:
// client.mts
import { getCurrentRunTree, traceable } from "langsmith/traceable";

const client = traceable(
    async () => {
        const runTree = getCurrentRunTree();
        return await fetch("...", {
            method: "POST",
            headers: runTree.toHeaders(),
        }).then((a) => a.text());
    },
    { name: "client" }
);

await client();
然后,服务器将标头转换回运行树,它使用该运行树来进一步继续跟踪。 要将新创建的运行树传递给可跟踪函数,我们可以使用 withRunTree 辅助函数,这将确保运行树在可跟踪调用中传播。
// server.mts
import { RunTree } from "langsmith";
import { traceable, withRunTree } from "langsmith/traceable";
import express from "express";
import bodyParser from "body-parser";

    const server = traceable(
        (text: string) => `Hello from the server! Received "${text}"`,
        { name: "server" }
    );

    const app = express();
    app.use(bodyParser.text());

app.post("/", async (req, res) => {
    const runTree = RunTree.fromHeaders(req.headers);
    const result = await withRunTree(runTree, () => server(req.body));
    res.send(result);
});

Connect these docs programmatically to Claude, VSCode, and more via MCP for real-time answers.