记忆是一个记住先前交互信息的系统。对于 AI 智能体,记忆至关重要,因为它让它们能够记住先前的交互、从反馈中学习并适应用户偏好。随着智能体处理具有大量用户交互的更复杂任务,这种能力对效率和用户满意度变得至关重要。
短期记忆让您的应用程序记住单个线程或对话中的先前交互。
线程在会话中组织多个交互,类似于电子邮件在单个对话中对消息进行分组的方式。
对话历史记录是最常见的短期记忆形式。长对话对当今的 LLM 构成了挑战;完整的历史记录可能无法放入 LLM 的上下文窗口中,导致上下文丢失或错误。
即使您的模型支持完整的上下文长度,大多数 LLM 在长上下文中仍然表现不佳。它们被陈旧或偏离主题的内容”分散注意力”,同时遭受响应时间变慢和成本更高的问题。
聊天模型使用消息接受上下文,其中包括指令(系统消息)和输入(人类消息)。在聊天应用程序中,消息在人类输入和模型响应之间交替,导致随着时间推移而变长的消息列表。由于上下文窗口有限,许多应用程序可以受益于使用技术来删除或”忘记”陈旧信息。
要向智能体添加短期记忆(线程级持久化),您需要在创建智能体时指定 checkpointer。
LangChain 的智能体将短期记忆作为智能体状态的一部分进行管理。通过将这些存储在图的状态中,智能体可以访问给定对话的完整上下文,同时保持不同线程之间的分离。状态使用检查点器持久化到数据库(或内存)中,以便线程可以随时恢复。当调用智能体或完成步骤(如工具调用)时,短期记忆会更新,并在每个步骤开始时读取状态。
from langchain.agents import create_agent
from langgraph.checkpoint.memory import InMemorySaver
agent = create_agent(
"gpt-5",
[get_user_info],
checkpointer=InMemorySaver(),
)
agent.invoke(
{"messages": [{"role": "user", "content": "Hi! My name is Bob."}]},
{"configurable": {"thread_id": "1"}},
)
在生产环境中
在生产环境中,使用由数据库支持的检查点器:
pip install langgraph-checkpoint-postgres
from langchain.agents import create_agent
from langgraph.checkpoint.postgres import PostgresSaver
DB_URI = "postgresql://postgres:postgres@localhost:5442/postgres?sslmode=disable"
with PostgresSaver.from_conn_string(DB_URI) as checkpointer:
checkpointer.setup() # auto create tables in PostgresSql
agent = create_agent(
"gpt-5",
[get_user_info],
checkpointer=checkpointer,
)
Customizing agent memory
默认情况下,智能体使用 AgentState 来管理短期记忆,特别是通过 messages 键管理对话历史。
您可以扩展 AgentState 以添加其他字段。自定义状态模式使用 state_schema 参数传递给 create_agent。
from langchain.agents import create_agent, AgentState
from langgraph.checkpoint.memory import InMemorySaver
class CustomAgentState(AgentState):
user_id: str
preferences: dict
agent = create_agent(
"gpt-5",
[get_user_info],
state_schema=CustomAgentState,
checkpointer=InMemorySaver(),
)
# Custom state can be passed in invoke
result = agent.invoke(
{
"messages": [{"role": "user", "content": "Hello"}],
"user_id": "user_123",
"preferences": {"theme": "dark"}
},
{"configurable": {"thread_id": "1"}})
Common patterns
With short-term memory enabled, long conversations can exceed the LLM’s context window. Common solutions are:
This allows the agent to keep track of the conversation without exceeding the LLM’s context window.
Trim messages
Most LLMs have a maximum supported context window (denominated in tokens).
One way to decide when to truncate messages is to count the tokens in the message history and truncate whenever it approaches that limit. If you’re using LangChain, you can use the trim messages utility and specify the number of tokens to keep from the list, as well as the strategy (e.g., keep the last max_tokens) to use for handling the boundary.
To trim message history in an agent, use the @before_model middleware decorator:
from langchain.messages import RemoveMessage
from langgraph.graph.message import REMOVE_ALL_MESSAGES
from langgraph.checkpoint.memory import InMemorySaver
from langchain.agents import create_agent, AgentState
from langchain.agents.middleware import before_model
from langgraph.runtime import Runtime
from langchain_core.runnables import RunnableConfig
from typing import Any
@before_model
def trim_messages(state: AgentState, runtime: Runtime) -> dict[str, Any] | None:
"""Keep only the last few messages to fit context window."""
messages = state["messages"]
if len(messages) <= 3:
return None # No changes needed
first_msg = messages[0]
recent_messages = messages[-3:] if len(messages) % 2 == 0 else messages[-4:]
new_messages = [first_msg] + recent_messages
return {
"messages": [
RemoveMessage(id=REMOVE_ALL_MESSAGES),
*new_messages
]
}
agent = create_agent(
model,
tools=tools,
middleware=[trim_messages],
checkpointer=InMemorySaver(),
)
config: RunnableConfig = {"configurable": {"thread_id": "1"}}
agent.invoke({"messages": "hi, my name is bob"}, config)
agent.invoke({"messages": "write a short poem about cats"}, config)
agent.invoke({"messages": "now do the same but for dogs"}, config)
final_response = agent.invoke({"messages": "what's my name?"}, config)
final_response["messages"][-1].pretty_print()
"""
================================== Ai Message ==================================
Your name is Bob. You told me that earlier.
If you'd like me to call you a nickname or use a different name, just say the word.
"""
Delete messages
You can delete messages from the graph state to manage the message history.
This is useful when you want to remove specific messages or clear the entire message history.
To delete messages from the graph state, you can use the RemoveMessage.
For RemoveMessage to work, you need to use a state key with add_messages reducer.
The default AgentState provides this.
To remove specific messages:
from langchain.messages import RemoveMessage
def delete_messages(state):
messages = state["messages"]
if len(messages) > 2:
# remove the earliest two messages
return {"messages": [RemoveMessage(id=m.id) for m in messages[:2]]}
To remove all messages:
from langgraph.graph.message import REMOVE_ALL_MESSAGES
def delete_messages(state):
return {"messages": [RemoveMessage(id=REMOVE_ALL_MESSAGES)]}
When deleting messages, make sure that the resulting message history is valid. Check the limitations of the LLM provider you’re using. For example:
- Some providers expect message history to start with a
user message
- Most providers require
assistant messages with tool calls to be followed by corresponding tool result messages.
from langchain.messages import RemoveMessage
from langchain.agents import create_agent, AgentState
from langchain.agents.middleware import after_model
from langgraph.checkpoint.memory import InMemorySaver
from langgraph.runtime import Runtime
from langchain_core.runnables import RunnableConfig
@after_model
def delete_old_messages(state: AgentState, runtime: Runtime) -> dict | None:
"""Remove old messages to keep conversation manageable."""
messages = state["messages"]
if len(messages) > 2:
# remove the earliest two messages
return {"messages": [RemoveMessage(id=m.id) for m in messages[:2]]}
return None
agent = create_agent(
"gpt-5-nano",
tools=[],
system_prompt="Please be concise and to the point.",
middleware=[delete_old_messages],
checkpointer=InMemorySaver(),
)
config: RunnableConfig = {"configurable": {"thread_id": "1"}}
for event in agent.stream(
{"messages": [{"role": "user", "content": "hi! I'm bob"}]},
config,
stream_mode="values",
):
print([(message.type, message.content) for message in event["messages"]])
for event in agent.stream(
{"messages": [{"role": "user", "content": "what's my name?"}]},
config,
stream_mode="values",
):
print([(message.type, message.content) for message in event["messages"]])
[('human', "hi! I'm bob")]
[('human', "hi! I'm bob"), ('ai', 'Hi Bob! Nice to meet you. How can I help you today? I can answer questions, brainstorm ideas, draft text, explain things, or help with code.')]
[('human', "hi! I'm bob"), ('ai', 'Hi Bob! Nice to meet you. How can I help you today? I can answer questions, brainstorm ideas, draft text, explain things, or help with code.'), ('human', "what's my name?")]
[('human', "hi! I'm bob"), ('ai', 'Hi Bob! Nice to meet you. How can I help you today? I can answer questions, brainstorm ideas, draft text, explain things, or help with code.'), ('human', "what's my name?"), ('ai', 'Your name is Bob. How can I help you today, Bob?')]
[('human', "what's my name?"), ('ai', 'Your name is Bob. How can I help you today, Bob?')]
Summarize messages
The problem with trimming or removing messages, as shown above, is that you may lose information from culling of the message queue.
Because of this, some applications benefit from a more sophisticated approach of summarizing the message history using a chat model.
To summarize message history in an agent, use the built-in SummarizationMiddleware:
from langchain.agents import create_agent
from langchain.agents.middleware import SummarizationMiddleware
from langgraph.checkpoint.memory import InMemorySaver
from langchain_core.runnables import RunnableConfig
checkpointer = InMemorySaver()
agent = create_agent(
model="gpt-4o",
tools=[],
middleware=[
SummarizationMiddleware(
model="gpt-4o-mini",
max_tokens_before_summary=4000, # Trigger summarization at 4000 tokens
messages_to_keep=20, # Keep last 20 messages after summary
)
],
checkpointer=checkpointer,
)
config: RunnableConfig = {"configurable": {"thread_id": "1"}}
agent.invoke({"messages": "hi, my name is bob"}, config)
agent.invoke({"messages": "write a short poem about cats"}, config)
agent.invoke({"messages": "now do the same but for dogs"}, config)
final_response = agent.invoke({"messages": "what's my name?"}, config)
final_response["messages"][-1].pretty_print()
"""
================================== Ai Message ==================================
Your name is Bob!
"""
See SummarizationMiddleware for more configuration options.
Access memory
You can access and modify the short-term memory (state) of an agent in several ways:
Access short term memory (state) in a tool using the ToolRuntime parameter.
The tool_runtime parameter is hidden from the tool signature (so the model doesn’t see it), but the tool can access the state through it.
from langchain.agents import create_agent, AgentState
from langchain.tools import tool, ToolRuntime
class CustomState(AgentState):
user_id: str
@tool
def get_user_info(
runtime: ToolRuntime
) -> str:
"""Look up user info."""
user_id = runtime.state["user_id"]
return "User is John Smith" if user_id == "user_123" else "Unknown user"
agent = create_agent(
model="gpt-5-nano",
tools=[get_user_info],
state_schema=CustomState,
)
result = agent.invoke({
"messages": "look up user information",
"user_id": "user_123"
})
print(result["messages"][-1].content)
# > User is John Smith.
To modify the agent’s short-term memory (state) during execution, you can return state updates directly from the tools.
This is useful for persisting intermediate results or making information accessible to subsequent tools or prompts.
from langchain.tools import tool, ToolRuntime
from langchain_core.runnables import RunnableConfig
from langchain.messages import ToolMessage
from langchain.agents import create_agent, AgentState
from langgraph.types import Command
from pydantic import BaseModel
class CustomState(AgentState):
user_name: str
class CustomContext(BaseModel):
user_id: str
@tool
def update_user_info(
runtime: ToolRuntime[CustomContext, CustomState],
) -> Command:
"""Look up and update user info."""
user_id = runtime.context.user_id
name = "John Smith" if user_id == "user_123" else "Unknown user"
return Command(update={
"user_name": name,
# update the message history
"messages": [
ToolMessage(
"Successfully looked up user information",
tool_call_id=runtime.tool_call_id
)
]
})
@tool
def greet(
runtime: ToolRuntime[CustomContext, CustomState]
) -> str:
"""Use this to greet the user once you found their info."""
user_name = runtime.state["user_name"]
return f"Hello {user_name}!"
agent = create_agent(
model="gpt-5-nano",
tools=[update_user_info, greet],
state_schema=CustomState,
context_schema=CustomContext,
)
agent.invoke(
{"messages": [{"role": "user", "content": "greet the user"}]},
context=CustomContext(user_id="user_123"),
)
Prompt
Access short term memory (state) in middleware to create dynamic prompts based on conversation history or custom state fields.
from langchain.agents import create_agent
from typing import TypedDict
from langchain.agents.middleware import dynamic_prompt, ModelRequest
class CustomContext(TypedDict):
user_name: str
def get_weather(city: str) -> str:
"""Get the weather in a city."""
return f"The weather in {city} is always sunny!"
@dynamic_prompt
def dynamic_system_prompt(request: ModelRequest) -> str:
user_name = request.runtime.context["user_name"]
system_prompt = f"You are a helpful assistant. Address the user as {user_name}."
return system_prompt
agent = create_agent(
model="gpt-5-nano",
tools=[get_weather],
middleware=[dynamic_system_prompt],
context_schema=CustomContext,
)
result = agent.invoke(
{"messages": [{"role": "user", "content": "What is the weather in SF?"}]},
context=CustomContext(user_name="John Smith"),
)
for msg in result["messages"]:
msg.pretty_print()
================================ Human Message =================================
What is the weather in SF?
================================== Ai Message ==================================
Tool Calls:
get_weather (call_WFQlOGn4b2yoJrv7cih342FG)
Call ID: call_WFQlOGn4b2yoJrv7cih342FG
Args:
city: San Francisco
================================= Tool Message =================================
Name: get_weather
The weather in San Francisco is always sunny!
================================== Ai Message ==================================
Hi John Smith, the weather in San Francisco is always sunny!
Before model
Access short term memory (state) in @before_model middleware to process messages before model calls.
from langchain.messages import RemoveMessage
from langgraph.graph.message import REMOVE_ALL_MESSAGES
from langgraph.checkpoint.memory import InMemorySaver
from langchain.agents import create_agent, AgentState
from langchain.agents.middleware import before_model
from langgraph.runtime import Runtime
from typing import Any
@before_model
def trim_messages(state: AgentState, runtime: Runtime) -> dict[str, Any] | None:
"""Keep only the last few messages to fit context window."""
messages = state["messages"]
if len(messages) <= 3:
return None # No changes needed
first_msg = messages[0]
recent_messages = messages[-3:] if len(messages) % 2 == 0 else messages[-4:]
new_messages = [first_msg] + recent_messages
return {
"messages": [
RemoveMessage(id=REMOVE_ALL_MESSAGES),
*new_messages
]
}
agent = create_agent(
model,
tools=tools,
middleware=[trim_messages]
)
config: RunnableConfig = {"configurable": {"thread_id": "1"}}
agent.invoke({"messages": "hi, my name is bob"}, config)
agent.invoke({"messages": "write a short poem about cats"}, config)
agent.invoke({"messages": "now do the same but for dogs"}, config)
final_response = agent.invoke({"messages": "what's my name?"}, config)
final_response["messages"][-1].pretty_print()
"""
================================== Ai Message ==================================
Your name is Bob. You told me that earlier.
If you'd like me to call you a nickname or use a different name, just say the word.
"""
After model
Access short term memory (state) in @after_model middleware to process messages after model calls.
from langchain.messages import RemoveMessage
from langgraph.checkpoint.memory import InMemorySaver
from langchain.agents import create_agent, AgentState
from langchain.agents.middleware import after_model
from langgraph.runtime import Runtime
@after_model
def validate_response(state: AgentState, runtime: Runtime) -> dict | None:
"""Remove messages containing sensitive words."""
STOP_WORDS = ["password", "secret"]
last_message = state["messages"][-1]
if any(word in last_message.content for word in STOP_WORDS):
return {"messages": [RemoveMessage(id=last_message.id)]}
return None
agent = create_agent(
model="gpt-5-nano",
tools=[],
middleware=[validate_response],
checkpointer=InMemorySaver(),
)