添加短期记忆
短期记忆(线程级持久化)使智能体能够跟踪多轮对话。要添加短期记忆:Copy
from langgraph.checkpoint.memory import InMemorySaver
from langgraph.graph import StateGraph
checkpointer = InMemorySaver()
builder = StateGraph(...)
graph = builder.compile(checkpointer=checkpointer)
graph.invoke(
{"messages": [{"role": "user", "content": "hi! i am Bob"}]},
{"configurable": {"thread_id": "1"}},
)
在生产环境中使用
在生产环境中,使用由数据库支持的检查点器:Copy
from langgraph.checkpoint.postgres import PostgresSaver
DB_URI = "postgresql://postgres:postgres@localhost:5442/postgres?sslmode=disable"
with PostgresSaver.from_conn_string(DB_URI) as checkpointer:
builder = StateGraph(...)
graph = builder.compile(checkpointer=checkpointer)
示例:使用 Postgres 检查点器
示例:使用 Postgres 检查点器
Copy
pip install -U "psycopg[binary,pool]" langgraph langgraph-checkpoint-postgres
首次使用 Postgres 检查点器时,您需要调用
checkpointer.setup()- Sync
- Async
Copy
from langchain.chat_models import init_chat_model
from langgraph.graph import StateGraph, MessagesState, START
from langgraph.checkpoint.postgres import PostgresSaver
model = init_chat_model(model="claude-haiku-4-5-20251001")
DB_URI = "postgresql://postgres:postgres@localhost:5442/postgres?sslmode=disable"
with PostgresSaver.from_conn_string(DB_URI) as checkpointer:
# checkpointer.setup()
def call_model(state: MessagesState):
response = model.invoke(state["messages"])
return {"messages": response}
builder = StateGraph(MessagesState)
builder.add_node(call_model)
builder.add_edge(START, "call_model")
graph = builder.compile(checkpointer=checkpointer)
config = {
"configurable": {
"thread_id": "1"
}
}
for chunk in graph.stream(
{"messages": [{"role": "user", "content": "hi! I'm bob"}]},
config,
stream_mode="values"
):
chunk["messages"][-1].pretty_print()
for chunk in graph.stream(
{"messages": [{"role": "user", "content": "what's my name?"}]},
config,
stream_mode="values"
):
chunk["messages"][-1].pretty_print()
Example: using [MongoDB](https://pypi.org/project/langgraph-checkpoint-mongodb/) checkpointer
Example: using [MongoDB](https://pypi.org/project/langgraph-checkpoint-mongodb/) checkpointer
Copy
pip install -U pymongo langgraph langgraph-checkpoint-mongodb
Setup
To use the MongoDB checkpointer, you will need a MongoDB cluster. Follow this guide to create a cluster if you don’t already have one.
- Sync
- Async
Copy
from langchain.chat_models import init_chat_model
from langgraph.graph import StateGraph, MessagesState, START
from langgraph.checkpoint.mongodb import MongoDBSaver
model = init_chat_model(model="claude-haiku-4-5-20251001")
DB_URI = "localhost:27017"
with MongoDBSaver.from_conn_string(DB_URI) as checkpointer:
def call_model(state: MessagesState):
response = model.invoke(state["messages"])
return {"messages": response}
builder = StateGraph(MessagesState)
builder.add_node(call_model)
builder.add_edge(START, "call_model")
graph = builder.compile(checkpointer=checkpointer)
config = {
"configurable": {
"thread_id": "1"
}
}
for chunk in graph.stream(
{"messages": [{"role": "user", "content": "hi! I'm bob"}]},
config,
stream_mode="values"
):
chunk["messages"][-1].pretty_print()
for chunk in graph.stream(
{"messages": [{"role": "user", "content": "what's my name?"}]},
config,
stream_mode="values"
):
chunk["messages"][-1].pretty_print()
Example: using [Redis](https://pypi.org/project/langgraph-checkpoint-redis/) checkpointer
Example: using [Redis](https://pypi.org/project/langgraph-checkpoint-redis/) checkpointer
Copy
pip install -U langgraph langgraph-checkpoint-redis
You need to call
checkpointer.setup() the first time you’re using Redis checkpointer- Sync
- Async
Copy
from langchain.chat_models import init_chat_model
from langgraph.graph import StateGraph, MessagesState, START
from langgraph.checkpoint.redis import RedisSaver
model = init_chat_model(model="claude-haiku-4-5-20251001")
DB_URI = "redis://localhost:6379"
with RedisSaver.from_conn_string(DB_URI) as checkpointer:
# checkpointer.setup()
def call_model(state: MessagesState):
response = model.invoke(state["messages"])
return {"messages": response}
builder = StateGraph(MessagesState)
builder.add_node(call_model)
builder.add_edge(START, "call_model")
graph = builder.compile(checkpointer=checkpointer)
config = {
"configurable": {
"thread_id": "1"
}
}
for chunk in graph.stream(
{"messages": [{"role": "user", "content": "hi! I'm bob"}]},
config,
stream_mode="values"
):
chunk["messages"][-1].pretty_print()
for chunk in graph.stream(
{"messages": [{"role": "user", "content": "what's my name?"}]},
config,
stream_mode="values"
):
chunk["messages"][-1].pretty_print()
在子图中使用
如果您的图包含子图,您只需要在编译父图时提供检查点器。LangGraph 会自动将检查点器传播到子图。Copy
from langgraph.graph import START, StateGraph
from langgraph.checkpoint.memory import InMemorySaver
from typing import TypedDict
class State(TypedDict):
foo: str
# Subgraph
def subgraph_node_1(state: State):
return {"foo": state["foo"] + "bar"}
subgraph_builder = StateGraph(State)
subgraph_builder.add_node(subgraph_node_1)
subgraph_builder.add_edge(START, "subgraph_node_1")
subgraph = subgraph_builder.compile()
# Parent graph
builder = StateGraph(State)
builder.add_node("node_1", subgraph)
builder.add_edge(START, "node_1")
checkpointer = InMemorySaver()
graph = builder.compile(checkpointer=checkpointer)
Copy
subgraph_builder = StateGraph(...)
subgraph = subgraph_builder.compile(checkpointer=True)
添加长期记忆
使用长期记忆来存储跨对话的用户特定或应用程序特定数据。Copy
from langgraph.store.memory import InMemoryStore
from langgraph.graph import StateGraph
store = InMemoryStore()
builder = StateGraph(...)
graph = builder.compile(store=store)
在生产中使用
在生产中,使用由数据库支持的存储:Copy
from langgraph.store.postgres import PostgresStore
DB_URI = "postgresql://postgres:postgres@localhost:5442/postgres?sslmode=disable"
with PostgresStore.from_conn_string(DB_URI) as store:
builder = StateGraph(...)
graph = builder.compile(store=store)
Example: using Postgres store
Example: using Postgres store
Copy
pip install -U "psycopg[binary,pool]" langgraph langgraph-checkpoint-postgres
You need to call
store.setup() the first time you’re using Postgres store- Sync
- Async
Copy
from langchain_core.runnables import RunnableConfig
from langchain.chat_models import init_chat_model
from langgraph.graph import StateGraph, MessagesState, START
from langgraph.checkpoint.postgres import PostgresSaver
from langgraph.store.postgres import PostgresStore
from langgraph.store.base import BaseStore
model = init_chat_model(model="claude-haiku-4-5-20251001")
DB_URI = "postgresql://postgres:postgres@localhost:5442/postgres?sslmode=disable"
with (
PostgresStore.from_conn_string(DB_URI) as store,
PostgresSaver.from_conn_string(DB_URI) as checkpointer,
):
# store.setup()
# checkpointer.setup()
def call_model(
state: MessagesState,
config: RunnableConfig,
*,
store: BaseStore,
):
user_id = config["configurable"]["user_id"]
namespace = ("memories", user_id)
memories = store.search(namespace, query=str(state["messages"][-1].content))
info = "\n".join([d.value["data"] for d in memories])
system_msg = f"You are a helpful assistant talking to the user. User info: {info}"
# Store new memories if the user asks the model to remember
last_message = state["messages"][-1]
if "remember" in last_message.content.lower():
memory = "User name is Bob"
store.put(namespace, str(uuid.uuid4()), {"data": memory})
response = model.invoke(
[{"role": "system", "content": system_msg}] + state["messages"]
)
return {"messages": response}
builder = StateGraph(MessagesState)
builder.add_node(call_model)
builder.add_edge(START, "call_model")
graph = builder.compile(
checkpointer=checkpointer,
store=store,
)
config = {
"configurable": {
"thread_id": "1",
"user_id": "1",
}
}
for chunk in graph.stream(
{"messages": [{"role": "user", "content": "Hi! Remember: my name is Bob"}]},
config,
stream_mode="values",
):
chunk["messages"][-1].pretty_print()
config = {
"configurable": {
"thread_id": "2",
"user_id": "1",
}
}
for chunk in graph.stream(
{"messages": [{"role": "user", "content": "what is my name?"}]},
config,
stream_mode="values",
):
chunk["messages"][-1].pretty_print()
Example: using [Redis](https://pypi.org/project/langgraph-checkpoint-redis/) store
Example: using [Redis](https://pypi.org/project/langgraph-checkpoint-redis/) store
Copy
pip install -U langgraph langgraph-checkpoint-redis
You need to call
store.setup() the first time you’re using Redis store- Sync
- Async
Copy
from langchain_core.runnables import RunnableConfig
from langchain.chat_models import init_chat_model
from langgraph.graph import StateGraph, MessagesState, START
from langgraph.checkpoint.redis import RedisSaver
from langgraph.store.redis import RedisStore
from langgraph.store.base import BaseStore
model = init_chat_model(model="claude-haiku-4-5-20251001")
DB_URI = "redis://localhost:6379"
with (
RedisStore.from_conn_string(DB_URI) as store,
RedisSaver.from_conn_string(DB_URI) as checkpointer,
):
store.setup()
checkpointer.setup()
def call_model(
state: MessagesState,
config: RunnableConfig,
*,
store: BaseStore,
):
user_id = config["configurable"]["user_id"]
namespace = ("memories", user_id)
memories = store.search(namespace, query=str(state["messages"][-1].content))
info = "\n".join([d.value["data"] for d in memories])
system_msg = f"You are a helpful assistant talking to the user. User info: {info}"
# Store new memories if the user asks the model to remember
last_message = state["messages"][-1]
if "remember" in last_message.content.lower():
memory = "User name is Bob"
store.put(namespace, str(uuid.uuid4()), {"data": memory})
response = model.invoke(
[{"role": "system", "content": system_msg}] + state["messages"]
)
return {"messages": response}
builder = StateGraph(MessagesState)
builder.add_node(call_model)
builder.add_edge(START, "call_model")
graph = builder.compile(
checkpointer=checkpointer,
store=store,
)
config = {
"configurable": {
"thread_id": "1",
"user_id": "1",
}
}
for chunk in graph.stream(
{"messages": [{"role": "user", "content": "Hi! Remember: my name is Bob"}]},
config,
stream_mode="values",
):
chunk["messages"][-1].pretty_print()
config = {
"configurable": {
"thread_id": "2",
"user_id": "1",
}
}
for chunk in graph.stream(
{"messages": [{"role": "user", "content": "what is my name?"}]},
config,
stream_mode="values",
):
chunk["messages"][-1].pretty_print()
使用语义搜索
在图的内存存储中启用语义搜索,让图智能体通过语义相似性搜索存储中的项目。Copy
from langchain.embeddings import init_embeddings
from langgraph.store.memory import InMemoryStore
# Create store with semantic search enabled
embeddings = init_embeddings("openai:text-embedding-3-small")
store = InMemoryStore(
index={
"embed": embeddings,
"dims": 1536,
}
)
store.put(("user_123", "memories"), "1", {"text": "I love pizza"})
store.put(("user_123", "memories"), "2", {"text": "I am a plumber"})
items = store.search(
("user_123", "memories"), query="I'm hungry", limit=1
)
Long-term memory with semantic search
Long-term memory with semantic search
Copy
from langchain.embeddings import init_embeddings
from langchain.chat_models import init_chat_model
from langgraph.store.base import BaseStore
from langgraph.store.memory import InMemoryStore
from langgraph.graph import START, MessagesState, StateGraph
model = init_chat_model("gpt-4o-mini")
# Create store with semantic search enabled
embeddings = init_embeddings("openai:text-embedding-3-small")
store = InMemoryStore(
index={
"embed": embeddings,
"dims": 1536,
}
)
store.put(("user_123", "memories"), "1", {"text": "I love pizza"})
store.put(("user_123", "memories"), "2", {"text": "I am a plumber"})
def chat(state, *, store: BaseStore):
# Search based on user's last message
items = store.search(
("user_123", "memories"), query=state["messages"][-1].content, limit=2
)
memories = "\n".join(item.value["text"] for item in items)
memories = f"## Memories of user\n{memories}" if memories else ""
response = model.invoke(
[
{"role": "system", "content": f"You are a helpful assistant.\n{memories}"},
*state["messages"],
]
)
return {"messages": [response]}
builder = StateGraph(MessagesState)
builder.add_node(chat)
builder.add_edge(START, "chat")
graph = builder.compile(store=store)
for message, metadata in graph.stream(
input={"messages": [{"role": "user", "content": "I'm hungry"}]},
stream_mode="messages",
):
print(message.content, end="")
管理短期记忆
启用短期记忆后,长对话可能会超过 LLM 的上下文窗口。常见的解决方案是:- 修剪消息:删除前 N 条或后 N 条消息(在调用 LLM 之前)
- 删除消息:从 LangGraph 状态中永久删除
- 摘要消息:摘要历史中的早期消息并用摘要替换它们
- 管理检查点以存储和检索消息历史
- 自定义策略(例如,消息过滤等)
修剪消息
Most LLMs have a maximum supported context window (denominated in tokens). One way to decide when to truncate messages is to count the tokens in the message history and truncate whenever it approaches that limit. If you’re using LangChain, you can use the trim messages utility and specify the number of tokens to keep from the list, as well as thestrategy (e.g., keep the last max_tokens) to use for handling the boundary.
To trim message history, use the trim_messages function:
Copy
from langchain_core.messages.utils import (
trim_messages,
count_tokens_approximately
)
def call_model(state: MessagesState):
messages = trim_messages(
state["messages"],
strategy="last",
token_counter=count_tokens_approximately,
max_tokens=128,
start_on="human",
end_on=("human", "tool"),
)
response = model.invoke(messages)
return {"messages": [response]}
builder = StateGraph(MessagesState)
builder.add_node(call_model)
...
Full example: trim messages
Full example: trim messages
Copy
from langchain_core.messages.utils import (
trim_messages,
count_tokens_approximately
)
from langchain.chat_models import init_chat_model
from langgraph.graph import StateGraph, START, MessagesState
model = init_chat_model("claude-sonnet-4-5-20250929")
summarization_model = model.bind(max_tokens=128)
def call_model(state: MessagesState):
messages = trim_messages(
state["messages"],
strategy="last",
token_counter=count_tokens_approximately,
max_tokens=128,
start_on="human",
end_on=("human", "tool"),
)
response = model.invoke(messages)
return {"messages": [response]}
checkpointer = InMemorySaver()
builder = StateGraph(MessagesState)
builder.add_node(call_model)
builder.add_edge(START, "call_model")
graph = builder.compile(checkpointer=checkpointer)
config = {"configurable": {"thread_id": "1"}}
graph.invoke({"messages": "hi, my name is bob"}, config)
graph.invoke({"messages": "write a short poem about cats"}, config)
graph.invoke({"messages": "now do the same but for dogs"}, config)
final_response = graph.invoke({"messages": "what's my name?"}, config)
final_response["messages"][-1].pretty_print()
Copy
================================== Ai Message ==================================
Your name is Bob, as you mentioned when you first introduced yourself.
删除消息
您可以从图状态中删除消息以管理消息历史。当您想要删除特定消息或清除整个消息历史时,这很有用。 To delete messages from the graph state, you can use theRemoveMessage. For RemoveMessage to work, you need to use a state key with add_messages reducer, like MessagesState.
To remove specific messages:
Copy
from langchain.messages import RemoveMessage
def delete_messages(state):
messages = state["messages"]
if len(messages) > 2:
# remove the earliest two messages
return {"messages": [RemoveMessage(id=m.id) for m in messages[:2]]}
Copy
from langgraph.graph.message import REMOVE_ALL_MESSAGES
def delete_messages(state):
return {"messages": [RemoveMessage(id=REMOVE_ALL_MESSAGES)]}
When deleting messages, make sure that the resulting message history is valid. Check the limitations of the LLM provider you’re using. For example:
- some providers expect message history to start with a
usermessage - most providers require
assistantmessages with tool calls to be followed by correspondingtoolresult messages.
Full example: delete messages
Full example: delete messages
Copy
from langchain.messages import RemoveMessage
def delete_messages(state):
messages = state["messages"]
if len(messages) > 2:
# remove the earliest two messages
return {"messages": [RemoveMessage(id=m.id) for m in messages[:2]]}
def call_model(state: MessagesState):
response = model.invoke(state["messages"])
return {"messages": response}
builder = StateGraph(MessagesState)
builder.add_sequence([call_model, delete_messages])
builder.add_edge(START, "call_model")
checkpointer = InMemorySaver()
app = builder.compile(checkpointer=checkpointer)
for event in app.stream(
{"messages": [{"role": "user", "content": "hi! I'm bob"}]},
config,
stream_mode="values"
):
print([(message.type, message.content) for message in event["messages"]])
for event in app.stream(
{"messages": [{"role": "user", "content": "what's my name?"}]},
config,
stream_mode="values"
):
print([(message.type, message.content) for message in event["messages"]])
Copy
[('human', "hi! I'm bob")]
[('human', "hi! I'm bob"), ('ai', 'Hi Bob! How are you doing today? Is there anything I can help you with?')]
[('human', "hi! I'm bob"), ('ai', 'Hi Bob! How are you doing today? Is there anything I can help you with?'), ('human', "what's my name?")]
[('human', "hi! I'm bob"), ('ai', 'Hi Bob! How are you doing today? Is there anything I can help you with?'), ('human', "what's my name?"), ('ai', 'Your name is Bob.')]
[('human', "what's my name?"), ('ai', 'Your name is Bob.')]
摘要消息
如上所示,修剪或删除消息的问题在于您可能会因消息队列的清理而丢失信息。因此,某些应用程序受益于使用聊天模型对消息历史进行摘要的更复杂方法。
Prompting and orchestration logic can be used to summarize the message history. For example, in LangGraph you can extend the MessagesState to include a summary key:
Copy
from langgraph.graph import MessagesState
class State(MessagesState):
summary: str
summarize_conversation node can be called after some number of messages have accumulated in the messages state key.
Copy
def summarize_conversation(state: State):
# First, we get any existing summary
summary = state.get("summary", "")
# Create our summarization prompt
if summary:
# A summary already exists
summary_message = (
f"This is a summary of the conversation to date: {summary}\n\n"
"Extend the summary by taking into account the new messages above:"
)
else:
summary_message = "Create a summary of the conversation above:"
# Add prompt to our history
messages = state["messages"] + [HumanMessage(content=summary_message)]
response = model.invoke(messages)
# Delete all but the 2 most recent messages
delete_messages = [RemoveMessage(id=m.id) for m in state["messages"][:-2]]
return {"summary": response.content, "messages": delete_messages}
Full example: summarize messages
Full example: summarize messages
Copy
from typing import Any, TypedDict
from langchain.chat_models import init_chat_model
from langchain.messages import AnyMessage
from langchain_core.messages.utils import count_tokens_approximately
from langgraph.graph import StateGraph, START, MessagesState
from langgraph.checkpoint.memory import InMemorySaver
from langmem.short_term import SummarizationNode, RunningSummary
model = init_chat_model("claude-sonnet-4-5-20250929")
summarization_model = model.bind(max_tokens=128)
class State(MessagesState):
context: dict[str, RunningSummary]
class LLMInputState(TypedDict):
summarized_messages: list[AnyMessage]
context: dict[str, RunningSummary]
summarization_node = SummarizationNode(
token_counter=count_tokens_approximately,
model=summarization_model,
max_tokens=256,
max_tokens_before_summary=256,
max_summary_tokens=128,
)
def call_model(state: LLMInputState):
response = model.invoke(state["summarized_messages"])
return {"messages": [response]}
checkpointer = InMemorySaver()
builder = StateGraph(State)
builder.add_node(call_model)
builder.add_node("summarize", summarization_node)
builder.add_edge(START, "summarize")
builder.add_edge("summarize", "call_model")
graph = builder.compile(checkpointer=checkpointer)
# Invoke the graph
config = {"configurable": {"thread_id": "1"}}
graph.invoke({"messages": "hi, my name is bob"}, config)
graph.invoke({"messages": "write a short poem about cats"}, config)
graph.invoke({"messages": "now do the same but for dogs"}, config)
final_response = graph.invoke({"messages": "what's my name?"}, config)
final_response["messages"][-1].pretty_print()
print("\nSummary:", final_response["context"]["running_summary"].summary)
- We will keep track of our running summary in the
contextfield
SummarizationNode).- Define private state that will be used only for filtering
call_model node.- We’re passing a private input state here to isolate the messages returned by the summarization node
Copy
================================== Ai Message ==================================
From our conversation, I can see that you introduced yourself as Bob. That's the name you shared with me when we began talking.
Summary: In this conversation, I was introduced to Bob, who then asked me to write a poem about cats. I composed a poem titled "The Mystery of Cats" that captured cats' graceful movements, independent nature, and their special relationship with humans. Bob then requested a similar poem about dogs, so I wrote "The Joy of Dogs," which highlighted dogs' loyalty, enthusiasm, and loving companionship. Both poems were written in a similar style but emphasized the distinct characteristics that make each pet special.
Manage checkpoints
You can view and delete the information stored by the checkpointer.View thread state
- Graph/Functional API
- Checkpointer API
Copy
config = {
"configurable": {
"thread_id": "1",
# optionally provide an ID for a specific checkpoint,
# otherwise the latest checkpoint is shown
# "checkpoint_id": "1f029ca3-1f5b-6704-8004-820c16b69a5a" #
}
}
graph.get_state(config)
Copy
StateSnapshot(
values={'messages': [HumanMessage(content="hi! I'm bob"), AIMessage(content='Hi Bob! How are you doing today?), HumanMessage(content="what's my name?"), AIMessage(content='Your name is Bob.')]}, next=(),
config={'configurable': {'thread_id': '1', 'checkpoint_ns': '', 'checkpoint_id': '1f029ca3-1f5b-6704-8004-820c16b69a5a'}},
metadata={
'source': 'loop',
'writes': {'call_model': {'messages': AIMessage(content='Your name is Bob.')}},
'step': 4,
'parents': {},
'thread_id': '1'
},
created_at='2025-05-05T16:01:24.680462+00:00',
parent_config={'configurable': {'thread_id': '1', 'checkpoint_ns': '', 'checkpoint_id': '1f029ca3-1790-6b0a-8003-baf965b6a38f'}},
tasks=(),
interrupts=()
)
View the history of the thread
- Graph/Functional API
- Checkpointer API
Copy
config = {
"configurable": {
"thread_id": "1"
}
}
list(graph.get_state_history(config))
Copy
[
StateSnapshot(
values={'messages': [HumanMessage(content="hi! I'm bob"), AIMessage(content='Hi Bob! How are you doing today? Is there anything I can help you with?'), HumanMessage(content="what's my name?"), AIMessage(content='Your name is Bob.')]},
next=(),
config={'configurable': {'thread_id': '1', 'checkpoint_ns': '', 'checkpoint_id': '1f029ca3-1f5b-6704-8004-820c16b69a5a'}},
metadata={'source': 'loop', 'writes': {'call_model': {'messages': AIMessage(content='Your name is Bob.')}}, 'step': 4, 'parents': {}, 'thread_id': '1'},
created_at='2025-05-05T16:01:24.680462+00:00',
parent_config={'configurable': {'thread_id': '1', 'checkpoint_ns': '', 'checkpoint_id': '1f029ca3-1790-6b0a-8003-baf965b6a38f'}},
tasks=(),
interrupts=()
),
StateSnapshot(
values={'messages': [HumanMessage(content="hi! I'm bob"), AIMessage(content='Hi Bob! How are you doing today? Is there anything I can help you with?'), HumanMessage(content="what's my name?")]},
next=('call_model',),
config={'configurable': {'thread_id': '1', 'checkpoint_ns': '', 'checkpoint_id': '1f029ca3-1790-6b0a-8003-baf965b6a38f'}},
metadata={'source': 'loop', 'writes': None, 'step': 3, 'parents': {}, 'thread_id': '1'},
created_at='2025-05-05T16:01:23.863421+00:00',
parent_config={...}
tasks=(PregelTask(id='8ab4155e-6b15-b885-9ce5-bed69a2c305c', name='call_model', path=('__pregel_pull', 'call_model'), error=None, interrupts=(), state=None, result={'messages': AIMessage(content='Your name is Bob.')}),),
interrupts=()
),
StateSnapshot(
values={'messages': [HumanMessage(content="hi! I'm bob"), AIMessage(content='Hi Bob! How are you doing today? Is there anything I can help you with?')]},
next=('__start__',),
config={...},
metadata={'source': 'input', 'writes': {'__start__': {'messages': [{'role': 'user', 'content': "what's my name?"}]}}, 'step': 2, 'parents': {}, 'thread_id': '1'},
created_at='2025-05-05T16:01:23.863173+00:00',
parent_config={...}
tasks=(PregelTask(id='24ba39d6-6db1-4c9b-f4c5-682aeaf38dcd', name='__start__', path=('__pregel_pull', '__start__'), error=None, interrupts=(), state=None, result={'messages': [{'role': 'user', 'content': "what's my name?"}]}),),
interrupts=()
),
StateSnapshot(
values={'messages': [HumanMessage(content="hi! I'm bob"), AIMessage(content='Hi Bob! How are you doing today? Is there anything I can help you with?')]},
next=(),
config={...},
metadata={'source': 'loop', 'writes': {'call_model': {'messages': AIMessage(content='Hi Bob! How are you doing today? Is there anything I can help you with?')}}, 'step': 1, 'parents': {}, 'thread_id': '1'},
created_at='2025-05-05T16:01:23.862295+00:00',
parent_config={...}
tasks=(),
interrupts=()
),
StateSnapshot(
values={'messages': [HumanMessage(content="hi! I'm bob")]},
next=('call_model',),
config={...},
metadata={'source': 'loop', 'writes': None, 'step': 0, 'parents': {}, 'thread_id': '1'},
created_at='2025-05-05T16:01:22.278960+00:00',
parent_config={...}
tasks=(PregelTask(id='8cbd75e0-3720-b056-04f7-71ac805140a0', name='call_model', path=('__pregel_pull', 'call_model'), error=None, interrupts=(), state=None, result={'messages': AIMessage(content='Hi Bob! How are you doing today? Is there anything I can help you with?')}),),
interrupts=()
),
StateSnapshot(
values={'messages': []},
next=('__start__',),
config={'configurable': {'thread_id': '1', 'checkpoint_ns': '', 'checkpoint_id': '1f029ca3-0870-6ce2-bfff-1f3f14c3e565'}},
metadata={'source': 'input', 'writes': {'__start__': {'messages': [{'role': 'user', 'content': "hi! I'm bob"}]}}, 'step': -1, 'parents': {}, 'thread_id': '1'},
created_at='2025-05-05T16:01:22.277497+00:00',
parent_config=None,
tasks=(PregelTask(id='d458367b-8265-812c-18e2-33001d199ce6', name='__start__', path=('__pregel_pull', '__start__'), error=None, interrupts=(), state=None, result={'messages': [{'role': 'user', 'content': "hi! I'm bob"}]}),),
interrupts=()
)
]
Delete all checkpoints for a thread
Copy
thread_id = "1"
checkpointer.delete_thread(thread_id)
预构建的记忆工具
LangMem 是一个由 LangChain 维护的库,提供用于管理智能体中长期记忆的工具。有关使用示例,请参阅 LangMem 文档。Connect these docs programmatically to Claude, VSCode, and more via MCP for real-time answers.