Neo4j 是由 Neo4j, Inc 开发的图数据库管理系统。
Neo4j 存储的数据元素是节点、连接它们的边,以及节点和边的属性。其开发者将其描述为具有原生图存储和处理的 ACID 兼容事务数据库,Neo4j 提供非开源的”社区版”,采用修改后的 GNU 通用公共许可证,在线备份和高可用性扩展采用闭源商业许可证。Neo 还根据闭源商业条款许可带有这些扩展的 Neo4j
本笔记本展示了如何使用 LLM 为可通过 Cypher 查询语言查询的图数据库提供自然语言接口。
Cypher 是一种声明式图查询语言,允许在属性图中进行表达性和高效的数据查询。

设置

您需要有一个运行中的 Neo4j 实例。一个选项是在其 Aura 云服务中创建免费的 Neo4j 数据库实例。您也可以使用 Neo4j Desktop 应用程序在本地运行数据库,或运行 docker 容器。 您可以通过执行以下脚本来运行本地 docker 容器:
docker run \
    --name neo4j \
    -p 7474:7474 -p 7687:7687 \
    -d \
    -e NEO4J_AUTH=neo4j/password \
    -e NEO4J_PLUGINS=\[\"apoc\"\]  \
    neo4j:latest
如果您使用 docker 容器,需要等待几秒钟让数据库启动。
from langchain_neo4j import GraphCypherQAChain, Neo4jGraph
from langchain_openai import ChatOpenAI
graph = Neo4jGraph(url="bolt://localhost:7687", username="neo4j", password="password")
在本指南中,我们默认使用 OpenAI 模型。
import getpass
import os

if "OPENAI_API_KEY" not in os.environ:
    os.environ["OPENAI_API_KEY"] = getpass.getpass("OpenAI API Key:")

填充数据库

假设您的数据库是空的,您可以使用 Cypher 查询语言填充它。以下 Cypher 语句是幂等的,这意味着无论运行一次还是多次,数据库信息都将相同。
graph.query(
    """
MERGE (m:Movie {name:"Top Gun", runtime: 120})
WITH m
UNWIND ["Tom Cruise", "Val Kilmer", "Anthony Edwards", "Meg Ryan"] AS actor
MERGE (a:Actor {name:actor})
MERGE (a)-[:ACTED_IN]->(m)
"""
)
[]

刷新图模式信息

如果数据库的模式发生变化,您可以刷新生成 Cypher 语句所需的模式信息。
graph.refresh_schema()
print(graph.schema)
Node properties:
Movie {runtime: INTEGER, name: STRING}
Actor {name: STRING}
Relationship properties:

The relationships:
(:Actor)-[:ACTED_IN]->(:Movie)

增强的模式信息

选择增强模式版本使系统能够自动扫描数据库中的示例值并计算一些分布指标。例如,如果节点属性少于 10 个不同的值,我们会在模式中返回所有可能的值。否则,每个节点和关系属性仅返回单个示例值。
enhanced_graph = Neo4jGraph(
    url="bolt://localhost:7687",
    username="neo4j",
    password="password",
    enhanced_schema=True,
)
print(enhanced_graph.schema)
Node properties:
- **Movie**
  - `runtime`: INTEGER Min: 120, Max: 120
  - `name`: STRING Available options: ['Top Gun']
- **Actor**
  - `name`: STRING Available options: ['Tom Cruise', 'Val Kilmer', 'Anthony Edwards', 'Meg Ryan']
Relationship properties:

The relationships:
(:Actor)-[:ACTED_IN]->(:Movie)

查询图

我们现在可以使用图 Cypher QA 链来询问图的问题
chain = GraphCypherQAChain.from_llm(
    ChatOpenAI(temperature=0), graph=graph, verbose=True, allow_dangerous_requests=True
)
chain.invoke({"query": "Who played in Top Gun?"})
> Entering new GraphCypherQAChain chain...
Generated Cypher:
MATCH (a:Actor)-[:ACTED_IN]->(m:Movie)
WHERE m.name = 'Top Gun'
RETURN a.name
Full Context:
[{'a.name': 'Tom Cruise'}, {'a.name': 'Val Kilmer'}, {'a.name': 'Anthony Edwards'}, {'a.name': 'Meg Ryan'}]

> Finished chain.
{'query': 'Who played in Top Gun?',
 'result': 'Tom Cruise, Val Kilmer, Anthony Edwards, and Meg Ryan played in Top Gun.'}

限制结果数量

您可以使用 top_k 参数限制 Cypher QA 链返回的结果数量。 默认值为 10。
chain = GraphCypherQAChain.from_llm(
    ChatOpenAI(temperature=0),
    graph=graph,
    verbose=True,
    top_k=2,
    allow_dangerous_requests=True,
)
chain.invoke({"query": "Who played in Top Gun?"})
> Entering new GraphCypherQAChain chain...
Generated Cypher:
MATCH (a:Actor)-[:ACTED_IN]->(m:Movie)
WHERE m.name = 'Top Gun'
RETURN a.name
Full Context:
[{'a.name': 'Tom Cruise'}, {'a.name': 'Val Kilmer'}]

> Finished chain.
{'query': 'Who played in Top Gun?',
 'result': 'Tom Cruise, Val Kilmer played in Top Gun.'}

返回中间结果

您可以使用 return_intermediate_steps 参数从 Cypher QA 链返回中间步骤
chain = GraphCypherQAChain.from_llm(
    ChatOpenAI(temperature=0),
    graph=graph,
    verbose=True,
    return_intermediate_steps=True,
    allow_dangerous_requests=True,
)
result = chain.invoke({"query": "Who played in Top Gun?"})
print(f"Intermediate steps: {result['intermediate_steps']}")
print(f"Final answer: {result['result']}")
> Entering new GraphCypherQAChain chain...
Generated Cypher:
MATCH (a:Actor)-[:ACTED_IN]->(m:Movie)
WHERE m.name = 'Top Gun'
RETURN a.name
Full Context:
[{'a.name': 'Tom Cruise'}, {'a.name': 'Val Kilmer'}, {'a.name': 'Anthony Edwards'}, {'a.name': 'Meg Ryan'}]

> Finished chain.
Intermediate steps: [{'query': "MATCH (a:Actor)-[:ACTED_IN]->(m:Movie)\nWHERE m.name = 'Top Gun'\nRETURN a.name"}, {'context': [{'a.name': 'Tom Cruise'}, {'a.name': 'Val Kilmer'}, {'a.name': 'Anthony Edwards'}, {'a.name': 'Meg Ryan'}]}]
Final answer: Tom Cruise, Val Kilmer, Anthony Edwards, and Meg Ryan played in Top Gun.

返回直接结果

您可以使用 return_direct 参数从 Cypher QA 链返回直接结果
chain = GraphCypherQAChain.from_llm(
    ChatOpenAI(temperature=0),
    graph=graph,
    verbose=True,
    return_direct=True,
    allow_dangerous_requests=True,
)
chain.invoke({"query": "Who played in Top Gun?"})
> Entering new GraphCypherQAChain chain...
Generated Cypher:
MATCH (a:Actor)-[:ACTED_IN]->(m:Movie)
WHERE m.name = 'Top Gun'
RETURN a.name

> Finished chain.
{'query': 'Who played in Top Gun?',
 'result': [{'a.name': 'Tom Cruise'},
  {'a.name': 'Val Kilmer'},
  {'a.name': 'Anthony Edwards'},
  {'a.name': 'Meg Ryan'}]}

在 Cypher 生成提示中添加示例

您可以定义希望 LLM 为特定问题生成的 Cypher 语句
from langchain_core.prompts.prompt import PromptTemplate

CYPHER_GENERATION_TEMPLATE = """Task:Generate Cypher statement to query a graph database.
Instructions:
Use only the provided relationship types and properties in the schema.
Do not use any other relationship types or properties that are not provided.
Schema:
{schema}
Note: Do not include any explanations or apologies in your responses.
Do not respond to any questions that might ask anything else than for you to construct a Cypher statement.
Do not include any text except the generated Cypher statement.
Examples: Here are a few examples of generated Cypher statements for particular questions:
# How many people played in Top Gun?
MATCH (m:Movie {{name:"Top Gun"}})<-[:ACTED_IN]-()
RETURN count(*) AS numberOfActors

The question is:
{question}"""

CYPHER_GENERATION_PROMPT = PromptTemplate(
    input_variables=["schema", "question"], template=CYPHER_GENERATION_TEMPLATE
)

chain = GraphCypherQAChain.from_llm(
    ChatOpenAI(temperature=0),
    graph=graph,
    verbose=True,
    cypher_prompt=CYPHER_GENERATION_PROMPT,
    allow_dangerous_requests=True,
)
chain.invoke({"query": "How many people played in Top Gun?"})
> Entering new GraphCypherQAChain chain...
Generated Cypher:
MATCH (m:Movie {name:"Top Gun"})<-[:ACTED_IN]-()
RETURN count(*) AS numberOfActors
Full Context:
[{'numberOfActors': 4}]

> Finished chain.
{'query': 'How many people played in Top Gun?',
 'result': 'There were 4 actors in Top Gun.'}

为 Cypher 和答案生成使用不同的 LLM

您可以使用 cypher_llmqa_llm 参数来定义不同的 LLM
chain = GraphCypherQAChain.from_llm(
    graph=graph,
    cypher_llm=ChatOpenAI(temperature=0, model="gpt-3.5-turbo"),
    qa_llm=ChatOpenAI(temperature=0, model="gpt-3.5-turbo-16k"),
    verbose=True,
    allow_dangerous_requests=True,
)
chain.invoke({"query": "Who played in Top Gun?"})
> Entering new GraphCypherQAChain chain...
Generated Cypher:
MATCH (a:Actor)-[:ACTED_IN]->(m:Movie)
WHERE m.name = 'Top Gun'
RETURN a.name
Full Context:
[{'a.name': 'Tom Cruise'}, {'a.name': 'Val Kilmer'}, {'a.name': 'Anthony Edwards'}, {'a.name': 'Meg Ryan'}]

> Finished chain.
{'query': 'Who played in Top Gun?',
 'result': 'Tom Cruise, Val Kilmer, Anthony Edwards, and Meg Ryan played in Top Gun.'}

忽略指定的节点和关系类型

您可以使用 include_typesexclude_types 在生成 Cypher 语句时忽略图模式的某些部分。
chain = GraphCypherQAChain.from_llm(
    graph=graph,
    cypher_llm=ChatOpenAI(temperature=0, model="gpt-3.5-turbo"),
    qa_llm=ChatOpenAI(temperature=0, model="gpt-3.5-turbo-16k"),
    verbose=True,
    exclude_types=["Movie"],
    allow_dangerous_requests=True,
)
# Inspect graph schema
print(chain.graph_schema)
Node properties are the following:
Actor {name: STRING}
Relationship properties are the following:

The relationships are the following:

验证生成的 Cypher 语句

您可以使用 validate_cypher 参数来验证和纠正生成的 Cypher 语句中的关系方向
chain = GraphCypherQAChain.from_llm(
    llm=ChatOpenAI(temperature=0, model="gpt-3.5-turbo"),
    graph=graph,
    verbose=True,
    validate_cypher=True,
    allow_dangerous_requests=True,
)
chain.invoke({"query": "Who played in Top Gun?"})
> Entering new GraphCypherQAChain chain...
Generated Cypher:
MATCH (a:Actor)-[:ACTED_IN]->(m:Movie)
WHERE m.name = 'Top Gun'
RETURN a.name
Full Context:
[{'a.name': 'Tom Cruise'}, {'a.name': 'Val Kilmer'}, {'a.name': 'Anthony Edwards'}, {'a.name': 'Meg Ryan'}]

> Finished chain.
{'query': 'Who played in Top Gun?',
 'result': 'Tom Cruise, Val Kilmer, Anthony Edwards, and Meg Ryan played in Top Gun.'}

将数据库结果作为工具/函数输出提供上下文

您可以使用 use_function_response 参数将数据库结果作为工具/函数输出传递给 LLM。这种方法提高了响应的准确性和相关性,因为 LLM 更紧密地遵循提供的上下文。 您需要使用支持原生函数调用的 LLM 才能使用此功能
chain = GraphCypherQAChain.from_llm(
    llm=ChatOpenAI(temperature=0, model="gpt-3.5-turbo"),
    graph=graph,
    verbose=True,
    use_function_response=True,
    allow_dangerous_requests=True,
)
chain.invoke({"query": "Who played in Top Gun?"})
> Entering new GraphCypherQAChain chain...
Generated Cypher:
MATCH (a:Actor)-[:ACTED_IN]->(m:Movie)
WHERE m.name = 'Top Gun'
RETURN a.name
Full Context:
[{'a.name': 'Tom Cruise'}, {'a.name': 'Val Kilmer'}, {'a.name': 'Anthony Edwards'}, {'a.name': 'Meg Ryan'}]

> Finished chain.
{'query': 'Who played in Top Gun?',
 'result': 'The main actors in Top Gun are Tom Cruise, Val Kilmer, Anthony Edwards, and Meg Ryan.'}
您可以通过提供 function_response_system 来在使用函数响应功能时提供自定义系统消息,以指导模型如何生成答案。 请注意,使用 use_function_response 时,qa_prompt 将不起作用
chain = GraphCypherQAChain.from_llm(
    llm=ChatOpenAI(temperature=0, model="gpt-3.5-turbo"),
    graph=graph,
    verbose=True,
    use_function_response=True,
    function_response_system="Respond as a pirate!",
    allow_dangerous_requests=True,
)
chain.invoke({"query": "Who played in Top Gun?"})
> Entering new GraphCypherQAChain chain...
Generated Cypher:
MATCH (a:Actor)-[:ACTED_IN]->(m:Movie)
WHERE m.name = 'Top Gun'
RETURN a.name
Full Context:
[{'a.name': 'Tom Cruise'}, {'a.name': 'Val Kilmer'}, {'a.name': 'Anthony Edwards'}, {'a.name': 'Meg Ryan'}]

> Finished chain.
{'query': 'Who played in Top Gun?',
 'result': "Arrr matey! In the film Top Gun, ye be seein' Tom Cruise, Val Kilmer, Anthony Edwards, and Meg Ryan sailin' the high seas of the sky! Aye, they be a fine crew of actors, they be!"}

Connect these docs programmatically to Claude, VSCode, and more via MCP for real-time answers.