这将帮助您开始使用 CloudflareWorkersAI 聊天模型。有关所有 ChatCloudflareWorkersAI 功能和配置的详细文档,请访问 API 参考

概述

集成详情

ClassPackageLocalSerializableJS supportDownloadsVersion
ChatCloudflareWorkersAIlangchain-cloudflarePyPI - DownloadsPyPI - Version

模型功能

Tool callingStructured outputJSON modeImage inputAudio inputVideo inputToken-level streamingNative asyncToken usageLogprobs

设置

要访问 CloudflareWorkersAI 模型,您需要创建 CloudflareWorkersAI 帐户、获取 API 密钥并安装 langchain-cloudflare 集成包。

凭证

前往 www.cloudflare.com/developer-platform/products/workers-ai/ 注册 CloudflareWorkersAI 并生成 API 密钥。完成后,设置 CF_AI_API_KEY 环境变量和 CF_ACCOUNT_ID 环境变量:
import getpass
import os

if not os.getenv("CF_AI_API_KEY"):
    os.environ["CF_AI_API_KEY"] = getpass.getpass(
        "Enter your CloudflareWorkersAI API key: "
    )

if not os.getenv("CF_ACCOUNT_ID"):
    os.environ["CF_ACCOUNT_ID"] = getpass.getpass(
        "Enter your CloudflareWorkersAI account ID: "
    )
如果您想获得模型调用的自动跟踪,也可以通过取消注释以下内容来设置您的 LangSmith API 密钥:
os.environ["LANGSMITH_TRACING"] = "true"
os.environ["LANGSMITH_API_KEY"] = getpass.getpass("Enter your LangSmith API key: ")

安装

LangChain CloudflareWorkersAI 集成位于 langchain-cloudflare 包中:
pip install -qU langchain-cloudflare

实例化

现在我们可以实例化模型对象并生成聊天完成:
  • 使用相关参数更新模型实例化。
from langchain_cloudflare.chat_models import ChatCloudflareWorkersAI

llm = ChatCloudflareWorkersAI(
    model="@cf/meta/llama-3.3-70b-instruct-fp8-fast",
    temperature=0,
    max_tokens=1024,
    # other params...
)

调用

messages = [
    (
        "system",
        "You are a helpful assistant that translates English to French. Translate the user sentence.",
    ),
    ("human", "I love programming."),
]
ai_msg = llm.invoke(messages)
ai_msg
AIMessage(content="J'adore la programmation.", additional_kwargs={}, response_metadata={'token_usage': {'prompt_tokens': 37, 'completion_tokens': 9, 'total_tokens': 46}, 'model_name': '@cf/meta/llama-3.3-70b-instruct-fp8-fast'}, id='run-995d1970-b6be-49f3-99ae-af4cdba02304-0', usage_metadata={'input_tokens': 37, 'output_tokens': 9, 'total_tokens': 46})
print(ai_msg.content)
J'adore la programmation.

结构化输出

json_schema = {
    "title": "joke",
    "description": "Joke to tell user.",
    "type": "object",
    "properties": {
        "setup": {
            "type": "string",
            "description": "The setup of the joke",
        },
        "punchline": {
            "type": "string",
            "description": "The punchline to the joke",
        },
        "rating": {
            "type": "integer",
            "description": "How funny the joke is, from 1 to 10",
            "default": None,
        },
    },
    "required": ["setup", "punchline"],
}
structured_llm = llm.with_structured_output(json_schema)

structured_llm.invoke("Tell me a joke about cats")
{'setup': 'Why did the cat join a band?',
 'punchline': 'Because it wanted to be the purr-cussionist',
 'rating': '8'}

绑定工具

from typing import List

from langchain.tools import tool


@tool
def validate_user(user_id: int, addresses: List[str]) -> bool:
    """Validate user using historical addresses.

    Args:
        user_id (int): the user ID.
        addresses (List[str]): Previous addresses as a list of strings.
    """
    return True


llm_with_tools = llm.bind_tools([validate_user])

result = llm_with_tools.invoke(
    "Could you validate user 123? They previously lived at "
    "123 Fake St in Boston MA and 234 Pretend Boulevard in "
    "Houston TX."
)
result.tool_calls
[{'name': 'validate_user',
  'args': {'user_id': '123',
   'addresses': '["123 Fake St in Boston MA", "234 Pretend Boulevard in Houston TX"]'},
  'id': '31ec7d6a-9ce5-471b-be64-8ea0492d1387',
  'type': 'tool_call'}]

API 参考

developers.cloudflare.com/workers-ai/ developers.cloudflare.com/agents/
Connect these docs programmatically to Claude, VSCode, and more via MCP for real-time answers.