LLMonitor 是一个开源可观测性平台,提供成本和使用分析、用户跟踪、跟踪和评估工具。
设置
在 llmonitor.com 上创建一个帐户,然后复制您的新应用的tracking id。
获得后,通过运行以下命令将其设置为环境变量:
与 LLM/聊天模型一起使用
与链和代理一起使用
确保将回调处理程序传递给run 方法,以便正确跟踪所有相关的链和 llm 调用。
还建议在元数据中传递 agent_name,以便能够在仪表板中区分代理。
Example:
We've raised a $125M Series B to build the platform for agent engineering. Read more.
LLMonitor 是一个开源可观测性平台,提供成本和使用分析、用户跟踪、跟踪和评估工具。
tracking id。
获得后,通过运行以下命令将其设置为环境变量:
export LLMONITOR_APP_ID="..."
from langchain_community.callbacks.llmonitor_callback import LLMonitorCallbackHandler
handler = LLMonitorCallbackHandler(app_id="...")
from langchain_openai import OpenAI
from langchain_openai import ChatOpenAI
handler = LLMonitorCallbackHandler()
llm = OpenAI(
callbacks=[handler],
)
chat = ChatOpenAI(callbacks=[handler])
llm("Tell me a joke")
run 方法,以便正确跟踪所有相关的链和 llm 调用。
还建议在元数据中传递 agent_name,以便能够在仪表板中区分代理。
Example:
from langchain_openai import ChatOpenAI
from langchain_community.callbacks.llmonitor_callback import LLMonitorCallbackHandler
from langchain.messages import SystemMessage, HumanMessage
from langchain.agents import OpenAIFunctionsAgent, AgentExecutor, tool
llm = ChatOpenAI(temperature=0)
handler = LLMonitorCallbackHandler()
@tool
def get_word_length(word: str) -> int:
"""Returns the length of a word."""
return len(word)
tools = [get_word_length]
prompt = OpenAIFunctionsAgent.create_prompt(
system_message=SystemMessage(
content="You are very powerful assistant, but bad at calculating lengths of words."
)
)
agent = OpenAIFunctionsAgent(llm=llm, tools=tools, prompt=prompt, verbose=True)
agent_executor = AgentExecutor(
agent=agent, tools=tools, verbose=True, metadata={"agent_name": "WordCount"} # <- recommended, assign a custom name
)
agent_executor.run("how many letters in the word educa?", callbacks=[handler])
import os
from langchain_community.agent_toolkits.load_tools import load_tools
from langchain_community.callbacks.llmonitor_callback import LLMonitorCallbackHandler
from langchain_openai import ChatOpenAI
from langchain.agents import create_agent
os.environ["LLMONITOR_APP_ID"] = ""
os.environ["OPENAI_API_KEY"] = ""
os.environ["SERPAPI_API_KEY"] = ""
handler = LLMonitorCallbackHandler()
llm = ChatOpenAI(temperature=0, callbacks=[handler])
tools = load_tools(["serpapi", "llm-math"], llm=llm)
agent = create_agent("gpt-4.1-mini", tools)
input_message = {
"role": "user",
"content": "What's the weather in SF?",
}
agent.invoke({"messages": [input_message]})
from langchain_community.callbacks.llmonitor_callback import LLMonitorCallbackHandler, identify
with identify("user-123"):
llm.invoke("Tell me a joke")
with identify("user-456", user_props={"email": "user456@test.com"}):
agent.invoke(...)